'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b()} Details: We have computed the following set of weak (innermost) dependency pairs: { a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , a__b^#() -> c_1() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark^#(b()) -> c_3(a__b^#()) , mark^#(a()) -> c_4() , a__f^#(X1, X2, X3) -> c_5() , a__b^#() -> c_6()} The usable rules are: { a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3)} The estimated dependency graph contains the following edges: {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} ==> {a__f^#(X1, X2, X3) -> c_5()} {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} ==> {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} ==> {a__f^#(X1, X2, X3) -> c_5()} {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} ==> {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} {mark^#(b()) -> c_3(a__b^#())} ==> {a__b^#() -> c_6()} {mark^#(b()) -> c_3(a__b^#())} ==> {a__b^#() -> c_1()} We consider the following path(s): 1) { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} The usable rules for this path are the following: { a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Details: We apply the weight gap principle, strictly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [1] x1 + [1] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} and weakly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [1] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> a()} and weakly orienting the rules { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [8] b() = [8] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [1] x1 + [4] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> b()} and weakly orienting the rules { a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [7] b() = [6] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} and weakly orienting the rules { a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [1] a__b() = [1] b() = [1] mark(x1) = [1] x1 + [0] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [15] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4] a() = [1] a__b() = [1] b() = [0] mark(x1) = [4] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [7] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [7] x1 + [5] c_2(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [6] a() = [0] a__b() = [0] b() = [0] mark(x1) = [4] x1 + [3] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [5] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [4] x3 + [1] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [7] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 2) { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , a__f^#(X1, X2, X3) -> c_5()} The usable rules for this path are the following: { a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__b() -> a() , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [7] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} and weakly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> a()} and weakly orienting the rules { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [8] b() = [8] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [3] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [3] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> b()} and weakly orienting the rules { a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [11] b() = [10] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_0(x1) = [1] x1 + [1] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} and weakly orienting the rules { a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [0] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [1] x1 + [5] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4] a() = [5] a__b() = [5] b() = [0] mark(x1) = [4] x1 + [7] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [7] x3 + [5] c_0(x1) = [2] x1 + [1] a__b^#() = [0] c_1() = [0] mark^#(x1) = [7] x1 + [5] c_2(x1) = [1] x1 + [5] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b())) , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a() , a__f^#(X1, X2, X3) -> c_5()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [2] a() = [0] a__b() = [0] b() = [0] mark(x1) = [4] x1 + [2] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [7] x3 + [0] c_0(x1) = [1] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [7] x1 + [4] c_2(x1) = [1] x1 + [5] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 3) {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} The usable rules for this path are the following: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} Details: We apply the weight gap principle, strictly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} and weakly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> a()} and weakly orienting the rules { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [8] b() = [8] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__b() -> b()} and weakly orienting the rules { a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [1] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X1, X2, X3) -> f(X1, X2, X3)} and weakly orienting the rules { a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] a() = [0] a__b() = [8] b() = [8] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [3] a() = [4] a__b() = [4] b() = [2] mark(x1) = [4] x1 + [0] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [2] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [6] x1 + [3] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , a__b() -> b() , a__b() -> a() , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , mark(b()) -> a__b() , mark(a()) -> a()} Details: Interpretation Functions: a__f(x1, x2, x3) = [6] x1 + [1] x2 + [5] x3 + [0] a() = [2] a__b() = [4] b() = [0] mark(x1) = [6] x1 + [4] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [6] x1 + [6] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 4) { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5()} The usable rules for this path are the following: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b() , a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { mark(a()) -> a() , a__b() -> a() , a__b() -> b()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [4] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(b()) -> a__b()} and weakly orienting the rules { mark(a()) -> a() , a__b() -> a() , a__b() -> b()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(b()) -> a__b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(X1, X2, X3) -> c_5()} and weakly orienting the rules { mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(X1, X2, X3) -> c_5()} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} and weakly orienting the rules { a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X1, X2, X3) -> f(X1, X2, X3)} and weakly orienting the rules { mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X1, X2, X3) -> f(X1, X2, X3)} Details: Interpretation Functions: a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] a() = [0] a__b() = [8] b() = [8] mark(x1) = [1] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)} Weak Rules: { a__f(a(), X, X) -> a__f(X, a__b(), b()) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [2] a() = [0] a__b() = [0] b() = [0] mark(x1) = [4] x1 + [1] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [5] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: a) We first check the conditional [Success]: We are considering a strict trs contains single rule TRS. b) We continue with the then-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())} Weak Rules: { mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) , a__f(X1, X2, X3) -> f(X1, X2, X3) , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3)) , a__f^#(X1, X2, X3) -> c_5() , mark(b()) -> a__b() , mark(a()) -> a() , a__b() -> a() , a__b() -> b()} Details: Interpretation Functions: a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4] a() = [1] a__b() = [1] b() = [0] mark(x1) = [4] x1 + [5] f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [4] x1 + [5] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] 5) { mark^#(b()) -> c_3(a__b^#()) , a__b^#() -> c_1()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {a__b^#() -> c_1()} Weak Rules: {mark^#(b()) -> c_3(a__b^#())} Details: We apply the weight gap principle, strictly orienting the rules {a__b^#() -> c_1()} and weakly orienting the rules {mark^#(b()) -> c_3(a__b^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b^#() -> c_1()} Details: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [1] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { a__b^#() -> c_1() , mark^#(b()) -> c_3(a__b^#())} Details: The given problem does not contain any strict rules 6) { mark^#(b()) -> c_3(a__b^#()) , a__b^#() -> c_6()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {a__b^#() -> c_6()} Weak Rules: {mark^#(b()) -> c_3(a__b^#())} Details: We apply the weight gap principle, strictly orienting the rules {a__b^#() -> c_6()} and weakly orienting the rules {mark^#(b()) -> c_3(a__b^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__b^#() -> c_6()} Details: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [1] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { a__b^#() -> c_6() , mark^#(b()) -> c_3(a__b^#())} Details: The given problem does not contain any strict rules 7) {mark^#(b()) -> c_3(a__b^#())} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(b()) -> c_3(a__b^#())} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(b()) -> c_3(a__b^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(b()) -> c_3(a__b^#())} Details: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(b()) -> c_3(a__b^#())} Details: The given problem does not contain any strict rules 8) {mark^#(a()) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(a()) -> c_4()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(a()) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(a()) -> c_4()} Details: Interpretation Functions: a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a() = [0] a__b() = [0] b() = [0] mark(x1) = [0] x1 + [0] f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_0(x1) = [0] x1 + [0] a__b^#() = [0] c_1() = [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] c_6() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(a()) -> c_4()} Details: The given problem does not contain any strict rules