'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
     , a__b() -> a()
     , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
     , mark(b()) -> a__b()
     , mark(a()) -> a()
     , a__f(X1, X2, X3) -> f(X1, X2, X3)
     , a__b() -> b()}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
    , a__b^#() -> c_1()
    , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
    , mark^#(b()) -> c_3(a__b^#())
    , mark^#(a()) -> c_4()
    , a__f^#(X1, X2, X3) -> c_5()
    , a__b^#() -> c_6()}
  
  The usable rules are:
   {  a__b() -> a()
    , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
    , mark(b()) -> a__b()
    , mark(a()) -> a()
    , a__b() -> b()
    , a__f(a(), X, X) -> a__f(X, a__b(), b())
    , a__f(X1, X2, X3) -> f(X1, X2, X3)}
  
  The estimated dependency graph contains the following edges:
   {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
     ==> {a__f^#(X1, X2, X3) -> c_5()}
   {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
     ==> {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
   {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
     ==> {a__f^#(X1, X2, X3) -> c_5()}
   {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
     ==> {a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
   {mark^#(b()) -> c_3(a__b^#())}
     ==> {a__b^#() -> c_6()}
   {mark^#(b()) -> c_3(a__b^#())}
     ==> {a__b^#() -> c_1()}
  
  We consider the following path(s):
   1) {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
      
      The usable rules for this path are the following:
      {  a__b() -> a()
       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
       , mark(b()) -> a__b()
       , mark(a()) -> a()
       , a__b() -> b()
       , a__f(a(), X, X) -> a__f(X, a__b(), b())
       , a__f(X1, X2, X3) -> f(X1, X2, X3)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a__b() -> a()
               , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
               , mark(b()) -> a__b()
               , mark(a()) -> a()
               , a__b() -> b()
               , a__f(a(), X, X) -> a__f(X, a__b(), b())
               , a__f(X1, X2, X3) -> f(X1, X2, X3)
               , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
               , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(b()) -> a__b()
               , mark(a()) -> a()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [1] x1 + [1]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
            and weakly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [1]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> a()}
            and weakly orienting the rules
            {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> a()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [8]
                  b() = [8]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [1] x1 + [4]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> b()}
            and weakly orienting the rules
            {  a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> b()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [7]
                  b() = [6]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c_0(x1) = [1] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
            and weakly orienting the rules
            {  a__b() -> b()
             , a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [1]
                  a__b() = [1]
                  b() = [1]
                  mark(x1) = [1] x1 + [0]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                 , a__f(X1, X2, X3) -> f(X1, X2, X3)
                 , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
              Weak Rules:
                {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                 , a__b() -> b()
                 , a__b() -> a()
                 , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                 , mark(b()) -> a__b()
                 , mark(a()) -> a()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                   , a__f(X1, X2, X3) -> f(X1, X2, X3)
                   , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                Weak Rules:
                  {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                   , a__b() -> b()
                   , a__b() -> a()
                   , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                   , mark(b()) -> a__b()
                   , mark(a()) -> a()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                  Weak Rules:
                    {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                    Weak Rules:
                      {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                         Weak Rules:
                           {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                           Weak Rules:
                             {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4]
                            a() = [1]
                            a__b() = [1]
                            b() = [0]
                            mark(x1) = [4] x1 + [1]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                            a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [7]
                            c_0(x1) = [1] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [7] x1 + [5]
                            c_2(x1) = [1] x1 + [4]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                  Weak Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                     , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                    Weak Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                         Weak Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                            , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                           Weak Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                              , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [6]
                            a() = [0]
                            a__b() = [0]
                            b() = [0]
                            mark(x1) = [4] x1 + [3]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [5]
                            a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [4] x3 + [1]
                            c_0(x1) = [1] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [7] x1 + [0]
                            c_2(x1) = [1] x1 + [1]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
      
   2) {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
       , a__f^#(X1, X2, X3) -> c_5()}
      
      The usable rules for this path are the following:
      {  a__b() -> a()
       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
       , mark(b()) -> a__b()
       , mark(a()) -> a()
       , a__b() -> b()
       , a__f(a(), X, X) -> a__f(X, a__b(), b())
       , a__f(X1, X2, X3) -> f(X1, X2, X3)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a__b() -> a()
               , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
               , mark(b()) -> a__b()
               , mark(a()) -> a()
               , a__b() -> b()
               , a__f(a(), X, X) -> a__f(X, a__b(), b())
               , a__f(X1, X2, X3) -> f(X1, X2, X3)
               , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
               , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
               , a__f^#(X1, X2, X3) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__f^#(X1, X2, X3) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(b()) -> a__b()
               , mark(a()) -> a()
               , a__f^#(X1, X2, X3) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [7]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
            and weakly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__f^#(X1, X2, X3) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> a()}
            and weakly orienting the rules
            {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__f^#(X1, X2, X3) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> a()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [8]
                  b() = [8]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [3]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [3]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> b()}
            and weakly orienting the rules
            {  a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__f^#(X1, X2, X3) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> b()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [11]
                  b() = [10]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_0(x1) = [1] x1 + [1]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
            and weakly orienting the rules
            {  a__b() -> b()
             , a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__f^#(X1, X2, X3) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [0]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [1] x1 + [5]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                 , a__f(X1, X2, X3) -> f(X1, X2, X3)
                 , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
              Weak Rules:
                {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                 , a__b() -> b()
                 , a__b() -> a()
                 , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                 , mark(b()) -> a__b()
                 , mark(a()) -> a()
                 , a__f^#(X1, X2, X3) -> c_5()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                   , a__f(X1, X2, X3) -> f(X1, X2, X3)
                   , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                Weak Rules:
                  {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                   , a__b() -> b()
                   , a__b() -> a()
                   , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                   , mark(b()) -> a__b()
                   , mark(a()) -> a()
                   , a__f^#(X1, X2, X3) -> c_5()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                  Weak Rules:
                    {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()
                     , a__f^#(X1, X2, X3) -> c_5()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                    Weak Rules:
                      {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()
                       , a__f^#(X1, X2, X3) -> c_5()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                         Weak Rules:
                           {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()
                            , a__f^#(X1, X2, X3) -> c_5()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))}
                           Weak Rules:
                             {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()
                              , a__f^#(X1, X2, X3) -> c_5()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4]
                            a() = [5]
                            a__b() = [5]
                            b() = [0]
                            mark(x1) = [4] x1 + [7]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                            a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [7] x3 + [5]
                            c_0(x1) = [2] x1 + [1]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [7] x1 + [5]
                            c_2(x1) = [1] x1 + [5]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                  Weak Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                     , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()
                     , a__f^#(X1, X2, X3) -> c_5()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                    Weak Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                       , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()
                       , a__f^#(X1, X2, X3) -> c_5()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                         Weak Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                            , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()
                            , a__f^#(X1, X2, X3) -> c_5()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {a__f(X1, X2, X3) -> f(X1, X2, X3)}
                           Weak Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f^#(a(), X, X) -> c_0(a__f^#(X, a__b(), b()))
                              , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()
                              , a__f^#(X1, X2, X3) -> c_5()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [2]
                            a() = [0]
                            a__b() = [0]
                            b() = [0]
                            mark(x1) = [4] x1 + [2]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                            a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [7] x3 + [0]
                            c_0(x1) = [1] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [7] x1 + [4]
                            c_2(x1) = [1] x1 + [5]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
      
   3) {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
      
      The usable rules for this path are the following:
      {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
       , mark(b()) -> a__b()
       , mark(a()) -> a()
       , a__b() -> a()
       , a__b() -> b()
       , a__f(a(), X, X) -> a__f(X, a__b(), b())
       , a__f(X1, X2, X3) -> f(X1, X2, X3)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
               , mark(b()) -> a__b()
               , mark(a()) -> a()
               , a__b() -> a()
               , a__b() -> b()
               , a__f(a(), X, X) -> a__f(X, a__b(), b())
               , a__f(X1, X2, X3) -> f(X1, X2, X3)
               , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(b()) -> a__b()
               , mark(a()) -> a()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
            and weakly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> a()}
            and weakly orienting the rules
            {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> a()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [8]
                  b() = [8]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__b() -> b()}
            and weakly orienting the rules
            {  a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b() -> b()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [1]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(X1, X2, X3) -> f(X1, X2, X3)}
            and weakly orienting the rules
            {  a__b() -> b()
             , a__b() -> a()
             , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , mark(b()) -> a__b()
             , mark(a()) -> a()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(X1, X2, X3) -> f(X1, X2, X3)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  a() = [0]
                  a__b() = [8]
                  b() = [8]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                 , a__f(a(), X, X) -> a__f(X, a__b(), b())}
              Weak Rules:
                {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                 , a__b() -> b()
                 , a__b() -> a()
                 , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                 , mark(b()) -> a__b()
                 , mark(a()) -> a()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                   , a__f(a(), X, X) -> a__f(X, a__b(), b())}
                Weak Rules:
                  {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                   , a__b() -> b()
                   , a__b() -> a()
                   , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                   , mark(b()) -> a__b()
                   , mark(a()) -> a()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                  Weak Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                    Weak Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                         Weak Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                           Weak Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [3]
                            a() = [4]
                            a__b() = [4]
                            b() = [2]
                            mark(x1) = [4] x1 + [0]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                            a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [2] x3 + [0]
                            c_0(x1) = [0] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [6] x1 + [3]
                            c_2(x1) = [1] x1 + [1]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                  Weak Rules:
                    {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , a__b() -> b()
                     , a__b() -> a()
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                    Weak Rules:
                      {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , a__b() -> b()
                       , a__b() -> a()
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                         Weak Rules:
                           {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , a__b() -> b()
                            , a__b() -> a()
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                           Weak Rules:
                             {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , a__b() -> b()
                              , a__b() -> a()
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [6] x1 + [1] x2 + [5] x3 + [0]
                            a() = [2]
                            a__b() = [4]
                            b() = [0]
                            mark(x1) = [6] x1 + [4]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                            a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [1] x3 + [0]
                            c_0(x1) = [0] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [6] x1 + [6]
                            c_2(x1) = [1] x1 + [1]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
      
   4) {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
       , a__f^#(X1, X2, X3) -> c_5()}
      
      The usable rules for this path are the following:
      {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
       , mark(b()) -> a__b()
       , mark(a()) -> a()
       , a__b() -> a()
       , a__b() -> b()
       , a__f(a(), X, X) -> a__f(X, a__b(), b())
       , a__f(X1, X2, X3) -> f(X1, X2, X3)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
               , mark(b()) -> a__b()
               , mark(a()) -> a()
               , a__b() -> a()
               , a__b() -> b()
               , a__f(a(), X, X) -> a__f(X, a__b(), b())
               , a__f(X1, X2, X3) -> f(X1, X2, X3)
               , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
               , a__f^#(X1, X2, X3) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(a()) -> a()
             , a__b() -> a()
             , a__b() -> b()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(a()) -> a()
               , a__b() -> a()
               , a__b() -> b()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [4]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(b()) -> a__b()}
            and weakly orienting the rules
            {  mark(a()) -> a()
             , a__b() -> a()
             , a__b() -> b()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(b()) -> a__b()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(X1, X2, X3) -> c_5()}
            and weakly orienting the rules
            {  mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__b() -> a()
             , a__b() -> b()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(X1, X2, X3) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
            and weakly orienting the rules
            {  a__f^#(X1, X2, X3) -> c_5()
             , mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__b() -> a()
             , a__b() -> b()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(X1, X2, X3) -> f(X1, X2, X3)}
            and weakly orienting the rules
            {  mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
             , a__f^#(X1, X2, X3) -> c_5()
             , mark(b()) -> a__b()
             , mark(a()) -> a()
             , a__b() -> a()
             , a__b() -> b()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(X1, X2, X3) -> f(X1, X2, X3)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  a() = [0]
                  a__b() = [8]
                  b() = [8]
                  mark(x1) = [1] x1 + [1]
                  f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                 , a__f(a(), X, X) -> a__f(X, a__b(), b())}
              Weak Rules:
                {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                 , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                 , a__f^#(X1, X2, X3) -> c_5()
                 , mark(b()) -> a__b()
                 , mark(a()) -> a()
                 , a__b() -> a()
                 , a__b() -> b()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                   , a__f(a(), X, X) -> a__f(X, a__b(), b())}
                Weak Rules:
                  {  a__f(X1, X2, X3) -> f(X1, X2, X3)
                   , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                   , a__f^#(X1, X2, X3) -> c_5()
                   , mark(b()) -> a__b()
                   , mark(a()) -> a()
                   , a__b() -> a()
                   , a__b() -> b()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                  Weak Rules:
                    {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                     , a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , a__f^#(X1, X2, X3) -> c_5()
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()
                     , a__b() -> a()
                     , a__b() -> b()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                    Weak Rules:
                      {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                       , a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , a__f^#(X1, X2, X3) -> c_5()
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()
                       , a__b() -> a()
                       , a__b() -> b()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                         Weak Rules:
                           {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                            , a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , a__f^#(X1, X2, X3) -> c_5()
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()
                            , a__b() -> a()
                            , a__b() -> b()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)}
                           Weak Rules:
                             {  a__f(a(), X, X) -> a__f(X, a__b(), b())
                              , a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , a__f^#(X1, X2, X3) -> c_5()
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()
                              , a__b() -> a()
                              , a__b() -> b()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [2]
                            a() = [0]
                            a__b() = [0]
                            b() = [0]
                            mark(x1) = [4] x1 + [1]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                            a__f^#(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [0]
                            c_0(x1) = [0] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [5] x1 + [0]
                            c_2(x1) = [1] x1 + [0]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                  Weak Rules:
                    {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                     , a__f(X1, X2, X3) -> f(X1, X2, X3)
                     , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                     , a__f^#(X1, X2, X3) -> c_5()
                     , mark(b()) -> a__b()
                     , mark(a()) -> a()
                     , a__b() -> a()
                     , a__b() -> b()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                    Weak Rules:
                      {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                       , a__f(X1, X2, X3) -> f(X1, X2, X3)
                       , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                       , a__f^#(X1, X2, X3) -> c_5()
                       , mark(b()) -> a__b()
                       , mark(a()) -> a()
                       , a__b() -> a()
                       , a__b() -> b()}
                  
                  Details:         
                    a) We first check the conditional [Success]:
                       We are considering a strict trs contains single rule TRS.
                    
                    b) We continue with the then-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                         Weak Rules:
                           {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                            , a__f(X1, X2, X3) -> f(X1, X2, X3)
                            , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                            , a__f^#(X1, X2, X3) -> c_5()
                            , mark(b()) -> a__b()
                            , mark(a()) -> a()
                            , a__b() -> a()
                            , a__b() -> b()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules: {a__f(a(), X, X) -> a__f(X, a__b(), b())}
                           Weak Rules:
                             {  mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3)
                              , a__f(X1, X2, X3) -> f(X1, X2, X3)
                              , mark^#(f(X1, X2, X3)) -> c_2(a__f^#(X1, mark(X2), X3))
                              , a__f^#(X1, X2, X3) -> c_5()
                              , mark(b()) -> a__b()
                              , mark(a()) -> a()
                              , a__b() -> a()
                              , a__b() -> b()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1, x2, x3) = [4] x1 + [1] x2 + [4] x3 + [4]
                            a() = [1]
                            a__b() = [1]
                            b() = [0]
                            mark(x1) = [4] x1 + [5]
                            f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                            a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [4] x3 + [0]
                            c_0(x1) = [0] x1 + [0]
                            a__b^#() = [0]
                            c_1() = [0]
                            mark^#(x1) = [4] x1 + [5]
                            c_2(x1) = [1] x1 + [0]
                            c_3(x1) = [0] x1 + [0]
                            c_4() = [0]
                            c_5() = [0]
                            c_6() = [0]
      
   5) {  mark^#(b()) -> c_3(a__b^#())
       , a__b^#() -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a() = [0]
           a__b() = [0]
           b() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_0(x1) = [0] x1 + [0]
           a__b^#() = [0]
           c_1() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {a__b^#() -> c_1()}
            Weak Rules: {mark^#(b()) -> c_3(a__b^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a__b^#() -> c_1()}
            and weakly orienting the rules
            {mark^#(b()) -> c_3(a__b^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b^#() -> c_1()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [1]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  a__b^#() -> c_1()
                 , mark^#(b()) -> c_3(a__b^#())}
            
            Details:         
              The given problem does not contain any strict rules
      
   6) {  mark^#(b()) -> c_3(a__b^#())
       , a__b^#() -> c_6()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a() = [0]
           a__b() = [0]
           b() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_0(x1) = [0] x1 + [0]
           a__b^#() = [0]
           c_1() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {a__b^#() -> c_6()}
            Weak Rules: {mark^#(b()) -> c_3(a__b^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a__b^#() -> c_6()}
            and weakly orienting the rules
            {mark^#(b()) -> c_3(a__b^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__b^#() -> c_6()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [1]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  a__b^#() -> c_6()
                 , mark^#(b()) -> c_3(a__b^#())}
            
            Details:         
              The given problem does not contain any strict rules
      
   7) {mark^#(b()) -> c_3(a__b^#())}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a() = [0]
           a__b() = [0]
           b() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_0(x1) = [0] x1 + [0]
           a__b^#() = [0]
           c_1() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(b()) -> c_3(a__b^#())}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(b()) -> c_3(a__b^#())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(b()) -> c_3(a__b^#())}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mark^#(b()) -> c_3(a__b^#())}
            
            Details:         
              The given problem does not contain any strict rules
      
   8) {mark^#(a()) -> c_4()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a() = [0]
           a__b() = [0]
           b() = [0]
           mark(x1) = [0] x1 + [0]
           f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_0(x1) = [0] x1 + [0]
           a__b^#() = [0]
           c_1() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(a()) -> c_4()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(a()) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(a()) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a() = [0]
                  a__b() = [0]
                  b() = [0]
                  mark(x1) = [0] x1 + [0]
                  f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__b^#() = [0]
                  c_1() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mark^#(a()) -> c_4()}
            
            Details:         
              The given problem does not contain any strict rules